Frail Hypotheses in Evolutionary Biology
نویسنده
چکیده
In the last decades, under the headings of ‘‘mutation strategies,’’ ‘‘evolvability,’’ or ‘‘soft inheritance,’’ many ideas have been advanced on mechanisms assumed to promote innovative evolution beyond what one may anticipate from the classical model of random mutation and selection. Many population geneticists find these ideas superficially seducing but mathematically unfounded. While agreeing with the need to critically evaluate such proposals in the light of population genetics, I will argue that population geneticists are not immune to criticism. For instance, the ‘‘infinite site model’’ introduced by Kimura makes the unrealistic assumption that any neutral mutation arises only once during a neutral fixation episode, which leads, I propose, to an underestimation of the neutral fixation rates in large populations. Critical parameters such as mutation and recombination rates, effective population sizes or beneficial/deleterious mutation ratios are assigned convenient values, which may seem ad hoc to people outside the field. The lack of concern for the subtleties of genetic mechanisms is also criticized. Phenomena such as compensatory mutations, recurrent mutations, hot spots, and polymorphism, which population geneticists treat in the mathematical context of neutral versus selective fixations, can instead be interpreted in terms of genetic mechanisms for producing complex mutational events. Finally, single nucleotide substitutions are often treated as the quasi-exclusive source of variations, yet they cannot help much once the genes are optimized with respect to these substitutions. I suggest that population geneticists should invest more effort in refining the numerical values of the critical parameters used in their models. They should take into account the recent proposals on how mutations arise. They should also pay more attention to phenotypic variations, and develop criteria to discriminate between proposed evolutionary mechanisms that can actually work, and others that cannot.
منابع مشابه
Interferon- Gamma- Inducible Guanosine Triphosphate Cyclohydrolase 1 (GTP-CH1) Pathway Is Associated with Frailty in Egyptian Elderly
Background: Chronic low-grade inflammation may be a cardinal pathophysiologic feature in the pathogenesis of frailty. Interferon-gamma (INF-γ) is an understudied proinflammatory cytokine in frailty that induces many inflammatory pathways including the guanosine triphosphate cyclohydrolase 1 (GTP-CH1) pathway. Our aim was to evaluate the GTP-CH1 pathway in Egyptian frail elderly subjects. ...
متن کاملNot Just a Theory—The Utility of Mathematical Models in Evolutionary Biology
Progress in science often begins with verbal hypotheses meant to explain why certain biological phenomena exist. An important purpose of mathematical models in evolutionary research, as in many other fields, is to act as “proof-of-concept” tests of the logic in verbal explanations, paralleling the way in which empirical data are used to test hypotheses. Because not all subfields of biology use ...
متن کاملEvolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes?
The recent discovery of diverse very large viruses, such as the mimivirus, has fostered a profusion of hypotheses positing that these viruses define a new domain of life together with the three cellular ones (Archaea, Bacteria and Eucarya). It has also been speculated that they have played a key role in the origin of eukaryotes as donors of important genes or even as the structures at the origi...
متن کاملTesting evolutionary hypotheses for phenotypic divergence using landscape genetics.
Understanding the evolutionary causes of phenotypic variation among populations has long been a central theme in evolutionary biology. Several factors can influence phenotypic divergence, including geographic isolation, genetic drift, divergent natural or sexual selection, and phenotypic plasticity. But the relative importance of these factors in generating phenotypic divergence in nature is st...
متن کاملAmniote phylogenomics: testing evolutionary hypotheses with BAC library scanning and targeted clone analysis of large-scale DNA sequences from reptiles.
Phylogenomics research integrating established principles of systematic biology and taking advantage of the wealth of DNA sequences being generated by genome science holds promise for answering long-standing evolutionary questions with orders of magnitude more primary data than in the past. Although it is unrealistic to expect whole-genome initiatives to proceed rapidly for commercially unimpor...
متن کاملEvolutionary biology: a basic science for psychiatry?
Evolutionary biology has much to offer psychiatry. It distinguishes between ultimate and proximate explanations of behavior and addresses the functional significance of behavior. Subtheories, frequently voiced misconceptions, specific applications, testable hypotheses and limitations of evolutionary theory are reviewed. An evolutionary perspective is likely to improve understanding of psychopat...
متن کامل